

D.T.CLASSES
Class 09 - Mathematics

Section A

1. If the given triangles are congruent, then which of the following options is CORRECT? [1]

a) $\triangle ABC \cong \triangle EDF$
b) $\triangle ABC \cong \triangle ADE$
c) $\triangle ABC \cong \triangle FDE$
d) $\triangle ACB \cong \triangle EDF$

2. If the sides of a triangle are produced in order, then the sum of the three exterior angles so formed is [1]

a) 90°
b) 360°
c) 270°
d) 180°

3. In $\triangle DEF$ and $\triangle PQR$, $DE = DF$, $\angle F = \angle P$ and $\angle E = \angle Q$. The two triangles are [1]

a) Isosceles and congruent
b) Neither congruent nor isosceles
c) Congruent but not isosceles
d) Isosceles but not necessarily congruent

4. If $AB = QR$, $BC = PR$ and $CA = PQ$, then [1]

a) $\triangle BAC \cong \triangle RPQ$
b) $\triangle ABC \cong \triangle PQR$
c) $\triangle PQR \cong \triangle BCA$
d) $\triangle CBA \cong \triangle PRQ$

5. In $\triangle ABC$ and $\triangle PQR$, $AB = PR$ and $\angle A = \angle P$. Then, the two triangles will be congruent by SAS axiom if: [1]

a) $AC = QR$
b) $AC = PQ$
c) $BC = QR$
d) $BC = PQ$

6. If the altitudes from two vertices of a triangle to the opposite sides are equal then the triangle is [1]

a) isosceles
b) scalene
c) right angled
d) equilateral

7. In triangles ABC and PQR three equality relations between some parts are as follows: $AB = QP$, $\angle B = \angle P$, $BC = PR$. State which of the congruence conditions applies: [1]

a) ASA
b) AAS

c) SAS

d) SSS

8. If triangle ABC is obtuse angled and $\angle C$ is obtuse, then [1]

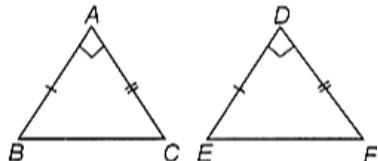
a) $AB < BC$

b) $AB = BC$

c) $AC > AB$

d) $AB > BC$

9. If $\Delta PQR \cong \Delta EFD$, then $ED =$ [1]


a) PQ and QR

b) PR

c) PQ

d) QR

10. If $AB = DE$, $AC = DF$, $\angle A = \angle D = 90^\circ$ and $BC = 5 \text{ cm}$, then EF is equal to _____. [1]

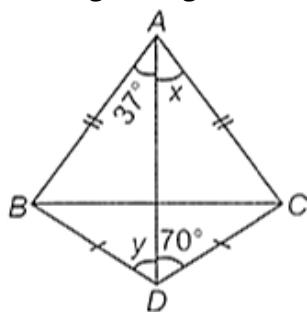
a) 5.5 cm

b) Can't be determined

c) 5 cm

d) 4.5 cm

11. $\Delta ABC \cong \Delta PQR$, then which of the following is true? [1]


a) $AB = RP$

b) $CA = RP$

c) $CB = QP$

d) $AC = RQ$

12. In the given figure, x and y are _____. [1]

a) $x + y = 117^\circ$

b) $x = 70^\circ, y = 37^\circ$

c) $x - y = 100^\circ$

d) $x = 37^\circ, y = 70^\circ$

13. In a ΔABC , if $3\angle A = 4\angle B = 6\angle C$ then $A : B : C = ?$ [1]

a) $3 : 4 : 6$

b) $6 : 4 : 3$

c) $2 : 3 : 4$

d) $4 : 3 : 2$

14. It is not possible to construct a triangle when its sides are: [1]

a) 6 cm, 7 cm, 7 cm

b) 3 cm, 5 cm, 5 cm

c) 5.4 cm, 2.3 cm, 3.1 cm

d) 8.3 cm, 3.4 cm, 6.1 cm

15. In ΔABC , $\angle A = 40^\circ$ and $\angle B = 60^\circ$ Then, the longest side of ΔABC is [1]

a) AC

b) AB

c) BC

d) cannot be determined

16. In ΔABC , $\angle A = 50^\circ$, $\angle B = 60^\circ$, Find the longest side of the triangle [1]

a) Cannot be determined

b) AB

c) CA d) BC

17. An exterior angle of a triangle is equal to 100° and two interior opposite angles are equal. Each of these angles is equal to [1]
a) 40° b) 80°
c) 75° d) 50°

18. AD, BE and CP, the altitudes of $\triangle ABC$ are equal. Then [1]
a) $AB = BC$ b) $AD = AB$
c) $AB = CF$ d) $AC = BC$

19. If $\triangle PQR \cong \triangle EFD$, then $\angle E =$ [1]
a) $\angle Q$ b) $\angle P$
c) $\angle Q$ and $\angle R$ d) $\angle R$

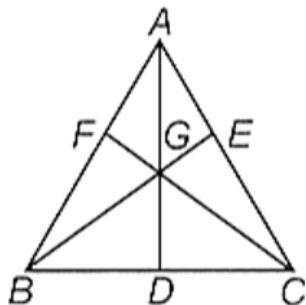
20. Which of the following is not possible in case of triangle ABC? [1]
a) $AB = 5\text{cm}$, $BC = 8\text{cm}$, $CA = 7\text{cm}$. b) $AB = 2\text{ cm}$, $BC = 4\text{ cm}$, $CA = 7\text{ cm}$.
c) $\angle A = 50^\circ$, $\angle B = 60^\circ$, $\angle C = 70^\circ$ d) $AB = 3\text{cm}$, $BC = 4\text{cm}$, $CA = 5\text{cm}$.

21. In $\triangle PQR$, if $\angle R > \angle Q$, then [1]
a) $PQ < PR$ b) $QR < PR$
c) $PQ > PR$ d) $QR > PR$

22. in $\triangle ABC$ and $\triangle DEF$ it is given that $AB = DE$ and $BC = EF$ in order that $\triangle ABC \cong \triangle DEF$, we must have [1]
a) $\angle B = \angle E$ b) $\angle C = \angle F$
c) $\angle C = \angle E$ d) $\angle A = \angle D$

23. If the bisectors of the acute angles of a right triangle meet at O, then the angle at O between the two bisectors is [1]
a) 135° b) 45°
c) 90° d) 95°

24. In $\triangle ABC$, if $\angle A = 45^\circ$ and $\angle B = 70^\circ$, then the shortest and the longest sides of the triangle are [1]
_____.
a) AB, BC b) BC, AC
c) BC, AB d) AB, AC


25. The cost of turfing a triangular field at the rate of Rs. 45 per 100 m^2 is Rs. 900. If the double the base of the triangle is 5 times its height, then its height is [1]
a) 40 m b) 32 m
c) 44 m d) 42 m

26. In $\triangle ABC$, $\angle C = \angle A$ and $BC = 6\text{ cm}$ and $AC = 5\text{ cm}$. Then the length of AB is: [1]
a) 3 cm b) 6 cm

c) 2.5 cm

d) 5 cm

27. In $\triangle ABC$, the medians AD, BE and CP passes through G. If BG = 6 units, then BE is _____. [1]

a) 1 unit

b) 9 units

c) 6 units

d) 3 units

28. Which of the following is **not** the criterion for similarity of triangles? [1]

a) SSS

b) LCM

c) SAS

d) AAA

29. If triangle PQR is right angled at Q, then [1]

a) PR > PQ

b) PR = PQ

c) PR < PQ

d) PR < QR

30. If $\triangle ABC \cong \triangle PQR$ by SSS congruence rule, then: [1]

a) BC = QR

b) BC = PQ

c) AC = QR

d) AC = PQ

31. The length of two sides of a triangle are 7 units and 10 units. Which of the following length can be the length of the third side? [1]

a) 19 cm

b) 13 cm

c) 17 cm

d) 3 cm

32. The base BC of triangle ABC is produced both ways and the measure of exterior angles formed are 94° and 126° . Then, $\angle BAC =$ [1]

a) 54°

b) 40°

c) 44°

d) 94°

33. The bisector of exterior angles at B and C of $\triangle ABC$ meet at O. If $\angle A = x^\circ$, then $\angle BOC =$ [1]

a) $180^\circ - \frac{x^\circ}{2}$

b) $90^\circ - \frac{x^\circ}{2}$

c) $180^\circ + \frac{x^\circ}{2}$

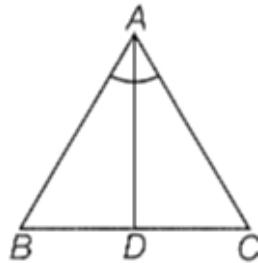
d) $90^\circ + \frac{x^\circ}{2}$

34. Two sides of a triangle are of length 4 cm and 2.5 cm. The length of the third side of the triangle cannot be [1]

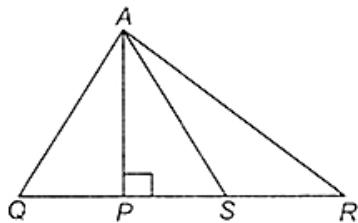
a) 6.5 cm

b) 6 cm

c) 6.3 cm


d) 5.5 cm

35. If $\triangle ABC \cong \triangle LKM$, then side of $\triangle LKM$ equal to side AC of $\triangle ABC$ is [1]


a) LK

b) LM

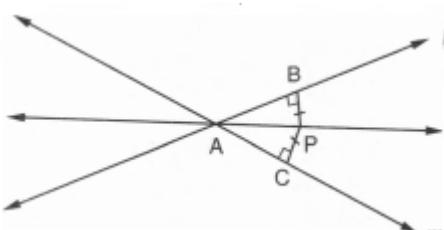
c) LK and KM
d) KM
36. If AD is bisector of $\angle A$ and it is perpendicular to BC. Then $\triangle ABC$ is _____ triangle. [1]

a) Isosceles
b) Scalene
c) Acute triangle
d) Equilateral
37. In the given figure, $AP \perp QR$, $PR > PQ$ and $PS = PQ$. Then [1]

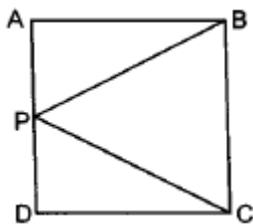
a) $AP = QP$
b) $\angle APS > \angle APQ$
c) $AR > AQ$
d) $AP > QP$
38. $\angle x$ and $\angle y$ are exterior angles of a triangle ABC at the points B and C respectively. Also, $\angle B > \angle C$, then the relation between $\angle x$ and $\angle y$ is: [1]

a) $\angle x \neq \angle y$
b) $\angle x = \angle y$
c) $\angle x < \angle y$
d) $\angle x > \angle y$

39. D, E, F are the mid-point of the sides BC, CA and AB respectively of $\triangle ABC$. Then $\triangle DEF$ is congruent to triangle [1]

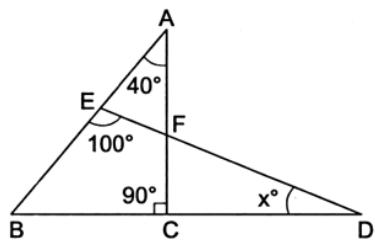

a) AFE, FBD, EDC
b) ABC
c) BFD, DCE
d) AEF

40. D is a point on the side BC of a $\triangle ABC$ such that AD bisects $\angle BAC$ then: [1]

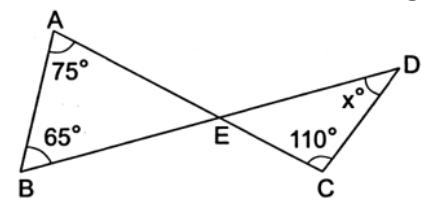

a) $CD > CA$
b) $BA > BD$
c) $BD = CD$
d) $BD > BA$

Section B

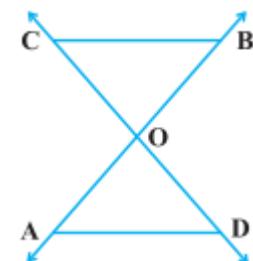
41. P is a point equidistant from two lines l and m intersecting at point A (see figure). Show that the line AP bisects the angle between them. [2]



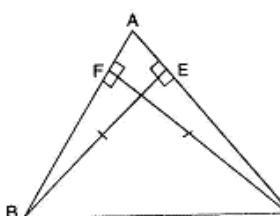
42. In given figure, ABCD is a square and P is the midpoint of AD. BP and CP are joined. Prove that $\angle PCB = \angle PBC$. [2]


43. Calculate the value of x in the figure given below:

[2]


44. Calculate the value of x in the figure.

[2]

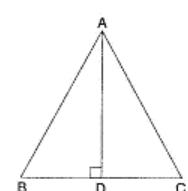

45. In Fig., two lines AB and CD intersect each other at the point O such that $BC \parallel DA$ and $BC = DA$. Show that O is the midpoint of both the line-segments AB and CD.

[2]

46. Prove that $\triangle ABC$ is an isosceles triangle, if altitude $BE =$ altitude CF .

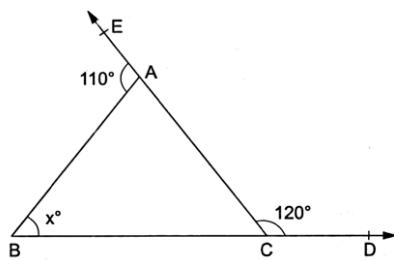
[2]

47. Two angles of a triangle are equal and the third angle is greater than each one of them by 18° . Find the angles.


[2]

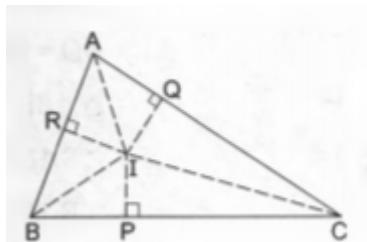
48. Is it possible to construct a triangle with lengths of its sides as 4 cm, 3 cm and 7 cm? Give reason for your answer.

[2]


49. In $\triangle ABC$, AD is the perpendicular bisector of BC (see figure). Show that $\triangle ABC$ is an isosceles triangle in which $AB = AC$.

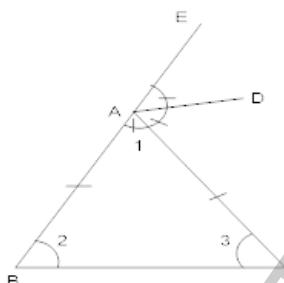
[2]

50. Calculate the value of x in each of the the given figure.


[2]

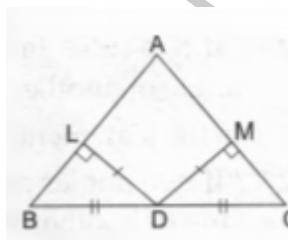
Section C

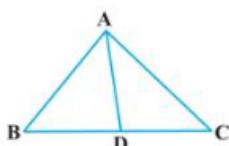
51. In the given figure, the bisectors of $\angle B$ and $\angle C$ of $\triangle ABC$ meet at I if $IP \perp BC$, $IQ \perp CA$ and $IR \perp AB$ [3]


- $IP = IQ = IR$ and
- IA bisects $\angle A$.

52. Prove that the angle between internal bisector of one base angle and the external bisector of the other base angle of a triangle is equal to one-half of the vertical angle. [3]

53. ABCD is a square. X and Y are points on sides AD and BC respectively such that $AY = BX$. Prove that $BY = AX$ and $\angle BAY = \angle ABX$. [3]


54. $\triangle ABC$ is an isosceles triangle with $AB = AC$. AD bisects the exterior $\angle A$. prove that $AD \parallel BC$. [3]

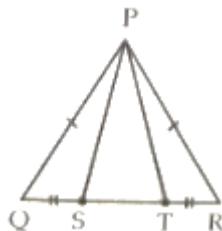

55. S is any point on side QR of a $\triangle PQR$. Show that: $PQ + QR + RP > 2PS$. [3]

56. ABC is an isosceles triangle with $AB = AC$ and BD and CE are its two medians. Show that $BD = CE$. [3]

57. In $\triangle ABC$, D is the midpoint of BC. if $DL \perp AB$ and $DM \perp AC$ such that $DL = DM$. prove that $AB = AC$. [3]

58. In the given figure, AD is the bisector of $\angle BAC$. Prove that $AB > BD$. [3]

59. In $\triangle ABC$, $\angle ABC = \angle ACB$ and the bisectors of $\angle ABC$ and $\angle ACB$ intersect at O such that $\angle BOC = 120^\circ$. Show that $\angle A = \angle B = \angle C = 60^\circ$. [3]


60. AD is an altitude of an isosceles triangle ABC in which $AB = AC$. Show that [3]

- AD bisects BC
- AD bisects $\angle A$.

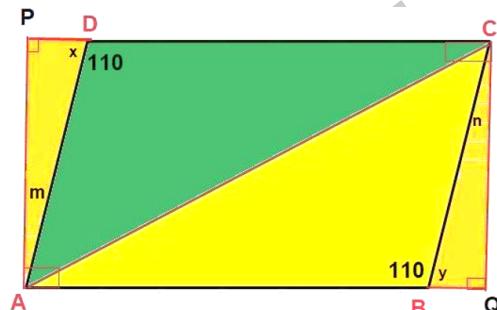
Section D

61. **Read the following text carefully and answer the questions that follow:** [4]

A children's park is in the shape of isosceles triangle said PQR with $PQ = PR$, S and T are points on QR such that $QT = RS$.

- Which rule is applied to prove that congruency of $\triangle PQS$ and $\triangle PRT$. (1)
- Name the type of $\triangle PST$. (1)
- If $PQ = 6 \text{ cm}$ and $QR = 7 \text{ cm}$, then find perimeter of $\triangle PQR$. (2)

OR


If $\angle QPR = 80^\circ$ find $\angle PQR$? (2)

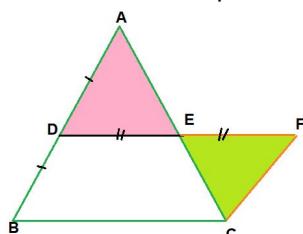
62. **Read the following text carefully and answer the questions that follow:**

[4]

In the middle of the city, there was a park ABCD in the form of a parallelogram form so that $AB = CD$, $AB \parallel CD$ and $AD = BC$, $AD \parallel BC$.

Municipality converted this park into a rectangular form by adding land in the form of $\triangle APD$ and $\triangle BCQ$. Both the triangular shape of land were covered by planting flower plants.

- Show that $\triangle APD$ and $\triangle BCQ$ are congruent. (1)
- PD is equal to which side? (1)
- Show that $\triangle ABC$ and $\triangle CDA$ are congruent. (2)


OR

What is the value of $\angle m$? (2)

63. **Read the following text carefully and answer the questions that follow:**

[4]

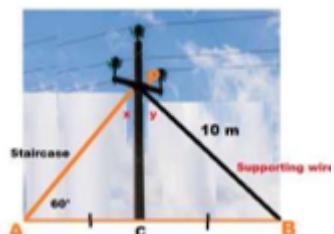
Haresh and Deep were trying to prove a theorem. For this they did the following

- Draw a triangle ABC

- ii. D and E are found as the mid points of AB and AC
- iii. DE was joined and DE was extended to F so $DE = EF$
- iv. FC was joined.

Questions:

- i. $\triangle ADE$ and $\triangle EFC$ are congruent by which criteria? (1)
- ii. Show that $CF \parallel AB$. (1)
- iii. Show that $CF = BD$. (2)


OR

Show that $DF = BC$ and $DF \parallel BC$. (2)

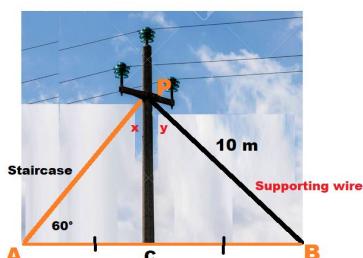
64. **Read the following text carefully and answer the questions that follow:** [4]

As shown In the village of Surya there was a big pole PC. This pole was tied with a strong wire of 10 m length. Once there was a big spark on this pole, thus wires got damaged very badly. Any small fault was usually repaired with the help of a rope which normal board electricians were carrying on bicycles.

This time electricians need a staircase of 10 m so that it can reach at point P on the pole and this should make 60° with line AC.

- i. Show that $\triangle APC$ and $\triangle BPC$ are congruent. (1)
- ii. Find the value of $\angle x$. (1)
- iii. Find the value of $\angle y$. (2)

OR


What is the value of $\angle PBC$? (2)

65. **Read the following text carefully and answer the questions that follow:** [4]

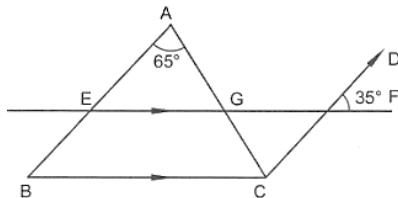
As shown In the village of Surya there was a big pole PC. This pole was tied with a strong wire of 10 m length.

Once there was a big spark on this pole, thus wires got damaged very badly. Any small fault was usually repaired with the help of a rope which normal board electricians were carrying on bicycles.

This time electricians need a staircase of 10 m so that it can reach at point P on the pole and this should make 60° with line AC.

- i. Show that $\triangle APC$ and $\triangle BPC$ are congruent. (1)
- ii. Find the value of $\angle x$. (1)

iii. What is the value of $\angle PBC$? (2)


OR

Find the value of $\angle y$. (2)

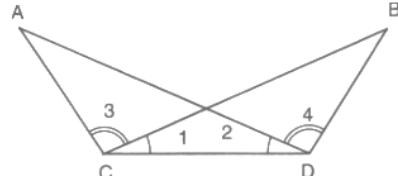
Section E

66. In Fig, if $AB \parallel CD$, $EE \parallel BC$, $\angle BAC = 65^\circ$ and $\angle DHF = 35^\circ$, find $\angle AGH$.

[5]

67. ABCD is a quadrilateral in which $AB = AD$, $BC = DC$ and diagonals intersect at point E. Prove that [5]

- AC bisects each of the angles A and C.
- $BE = ED$
- $\angle ABC = \angle ADC$. Is $AE = EC$?

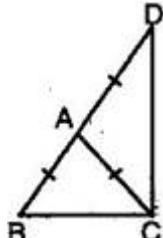

68. Bisectors of the angles B and C of an isosceles triangle ABC with $AB = AC$ intersect each other at O. Show that external angle which is adjacent to $\angle ABC$ is equal to $\angle BOC$. [5]

69. In a right triangle, prove that the line-segment joining the mid-point of the hypotenuse to the opposite vertex is half the hypotenuse. [5]

70. $\triangle ABC$ circumscribes a circle of radius r such that $\angle B = 90^\circ$. If $AB = 3$ cm and $BC = 4$ cm, then find the value of r. [5]

71. If the bisector of an angle of a triangle bisects the opposite side, prove that the triangle is isosceles. [5]

72. In figure, $\angle BCD = \angle ADC$ and $\angle ACB = \angle BDA$. Prove that $AD = BC$ and $\angle A = \angle B$. [5]


73. In right triangle ABC right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that $DM = CM$. Point D is joined to point B. [5]

Show that:

- $\triangle AMC \cong \triangle BMD$
- $\angle DBC$ is a right angle
- $\triangle DBC \cong \triangle ACB$
- $CM = \frac{1}{2}AB$

74. ABCD is quadrilateral such that $AB = AD$ and $CB = CD$. Prove that AC is the perpendicular bisector of BD. [5]

75. $\triangle ABC$ is an isosceles triangle in which $AB = AC$. Side BA is produced to D such that $AD = AB$ (See figure). Show that $\angle BCD$ is a right angle. [5]

MATHS BY DEVEESH
SIR