

DEVESHTEDIA CLASSES
Above muthoot finance bank, awadhpuri, bhopal

D.T.CLASSES
Class 09 - Mathematics

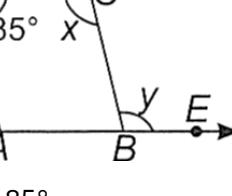
Section A

1. In $\triangle ABC$, EF is the line segment joining the mid-points of the sides AB and AC. $BC = 7.2$ cm, [1] Find EF.
a) 3.6 cm b) 2.6 cm
c) 3.5 cm d) 3.4 cm
2. If a diagonal AC and BD of a quadrilateral ABCD bisect each other, then ABCD is a [1]
a) Parallelogram b) Triangle
c) Rectangle d) Rhombus
3. Given Rectangle ABCD and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. If length of a diagonal of Rectangle is 8 cm, then the quadrilateral PQRS is a [1]
a) Rectangle with one side 4 cm b) Square with each side 4 cm
c) Rhombus with each side 4 cm d) Parallelogram with one side 4 cm
4. ABCD is a parallelogram and E and F are the centroids of triangles ABD and BCD respectively, [1] then EF =
a) DE b) CE
c) AE d) BE
5. Diagonals of a Parallelogram ABCD intersect at O. If $\angle BOC = 90^\circ$, $\angle BDC = 50^\circ$ then $\angle OAB$ [1] is
a) 90° b) 40°
c) 50° d) 10°
6. If one angle of a parallelogram is 24° less than twice the smallest angle, then the measure of the [1] largest angle of the parallelogram is
a) 112° b) 176°
c) 102° d) 68°
7. The figure formed by joining the mid-points of the sides of a quadrilateral ABCD, taken in order, [1] is a square only if
a) Diagonals of ABCD are equal and b) ABCD is a Rhombus
perpendicular
c) Diagonals of ABCD are perpendicular d) Diagonals of ABCD are equal
8. ABCD is a Trapezium in which $AB \parallel DC$ and $\angle A = \angle B = 45^\circ$. Find angles C and D of the [1] trapezium.

Trapezium

- a) $135^\circ, 135^\circ$ b) $200^\circ, 50^\circ$
c) $120^\circ, 120^\circ$ d) $150^\circ, 150^\circ$
9. In $\triangle ABC$, $\angle A = 30^\circ$, $\angle B = 40^\circ$ and $\angle C = 110^\circ$. The angles of the triangle formed by joining the mid-points of the sides of this triangle are [1]
a) $60^\circ, 70^\circ, 50^\circ$ b) $60^\circ, 40^\circ, 80^\circ$
c) $70^\circ, 70^\circ, 40^\circ$ d) $30^\circ, 40^\circ, 110^\circ$
10. The figure forms by joining the mid-points of the sides of a Rhombus, taken in order are: [1]
a) A Triangle b) A Rhombus
c) A Parallelogram d) A Rectangle
11. ABCD is a Rectangle, diagonals AC and BD intersect each other at P. If $\angle APD = 52^\circ$, find $\angle ACB$ and $\angle DBA$. [1]
a) 25° and 25° b) 100° and 260°
c) 20° and 120° d) 64° and 26°
12. Opposite angles of a Quadrilateral ABCD are equal. If AB = 4cm, find the length of CD. [1]
a) 2 cm b) 5 cm
c) 4 cm d) 3 cm
13. The area of a quadrilateral whose diagonals measure 48 m and 32 m respectively and bisect each other at right angles is [1]
a) 768 m^2 b) 758 m^2
c) 742 m^2 d) 732 m^2
14. In Triangle ABC which is right angled at B. Given that AB = 9cm, AC = 15cm and D, E are the mid-points of the sides AB and AC respectively. Find the length of BC? [1]
a) 15cm b) 13cm
c) 12cm d) 13.5cm
15. If bisectors of $\angle A$ and $\angle B$ of a quadrilateral ABCD intersect each other at P, of $\angle B$ and $\angle C$ at Q, of $\angle C$ and $\angle D$ at R and of $\angle D$ and $\angle A$ at S, then PQRS is a [1]
a) Quadrilateral whose opposite angles are supplementary b) Rhombus
c) Rectangle d) Parallelogram
16. The angle between two altitudes of a Parallelogram through the vertex of an obtuse angle of the Parallelogram of 60° . Find the angles of the Parallelogram [1]
a) $150^\circ, 150^\circ, 30^\circ, 30^\circ$ b) $200^\circ, 100^\circ, 30^\circ, 30^\circ$
c) $110^\circ, 50^\circ, 105^\circ, 105^\circ$ d) $120^\circ, 60^\circ, 120^\circ, 60^\circ$
17. The figure formed by joining the mid-points of the adjacent sides of a rhombus is a [1]

18. The Diagonals AC and BD of a Parallelogram ABCD intersect each other at point O. If $\angle DAC = 32^\circ$ and $\angle AOB = 70^\circ$, then $\angle DBC$ is equal to [1]
 a) 38° b) 86°
 c) 24° d) 32°


19. D and E are the mid-points of the sides AB and AC of $\triangle ABC$ and O is any point on the side BC, O is joined to A. If P and Q are the mid-points of OB and OC res, Then DEQP is [1]
 a) A Parallelogram b) A Rectangle
 c) A Rhombus d) A Triangle

20. The diagonals AC and BD of a parallelogram ABCD intersect each other at the point O. If $\angle DAC = 32^\circ$ and $\angle AOB = 70^\circ$ then, $\angle DBC$ is equal to [1]
 a) 24° b) 40°
 c) 86° d) 38°

21. In $\triangle ABC$, E is the mid-point of median AD such that BE produced meets AC at F. If AC = 10.5 cm, then AF = [1]
 a) 5 cm b) 2.5 cm
 c) 3 cm d) 3.5 cm

22. The lengths of the diagonals of a rhombus are 16 cm and 12 cm. The length of each side of the rhombus is [1]
 a) 8 cm b) 12 cm
 c) 10 cm d) 9 cm

23. ABCD is a parallelogram in which $\angle ADC = 85^\circ$ and side AB is produced to point E as shown in the figure. Find the value of $(x + y)$. [1]

a) 85° b) 95°
 c) 190° d) 160°

24. ABCD is a Parallelogram in which $\angle BAO = 35^\circ$, $\angle DAO = 40^\circ$ and $\angle COD = 105^\circ$. Find $\angle ABO$? [1]
 a) 30° b) 45°
 c) 20° d) 40°

25. The two diagonals are equal in a [1]
 a) trapezium b) rhombus
 c) rectangle d) parallelogram

26. Diagonals of a quadrilateral ABCD bisect each other. If $\angle A = 45^\circ$, then $\angle B =$ [1]

- a) 125° b) 120°
c) 135° d) 115°

27. In which of the following figures are the diagonals equal? [1]

- a) Parallelogram b) Rhombus
c) Trapezium d) Rectangle

28. By using a given figure of quadrilateral ABCD, match the following: [1]

Column-I	Column-II
(a) If ABCD is a parallelogram, then sum of the angles x, y and z is	(i) 25°
(b) If ABCD is a rhombus, where $\angle D = 130^\circ$, then the value of x is	(ii) 180°
(c) If ABCD is a rhombus, then value of w is	(iii) 50°
(d) If ABCD is a parallelogram, where $x + y = 130^\circ$, then the value of $\angle B$ is	(iv) 90°

- a) (a) - (iii), (b) - (i), (c) - (ii), (d) - (iv)
b) (a) - (i), (b) - (ii), (c) - (iii), (d) - (iv)
c) (a) - (ii), (b) - (i), (c) - (iv), (d) - (iii)
d) (a) - (iv), (b) - (iii), (c) - (i), (d) - (ii)

29. E Divides AB in the ratio 1 : 3 and also, F divides AC in the ratio 1 : 3. EF = 2.8 cm, Find BC [1]

- a) 12 cm b) 11 cm
c) 11.2 cm d) 11.5 cm

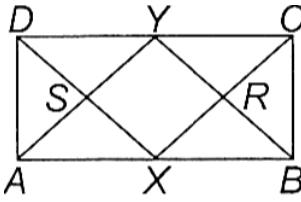
30. What is the length of PQ in a trapezium ABCD in which $AB \parallel DC$ and P and Q are mid-points on AD and BC respectively? [1]

- a) $\frac{1}{2}(AB + CD)$ b) $\frac{1}{2}(AB + BD)$
c) $\frac{1}{2}CD$ d) $\frac{1}{2}AB$

31. D and E are the mid-points of the sides AB and AC, respectively of $\triangle ABC$. DE is produced to F. To prove that CF is equal and parallel to DA, we need an additional information which is [1]

- a) $\angle DAE = \angle EFC$ b) $AE = EF$
c) $DE = EF$ d) $\angle ADE = \angle ECF$

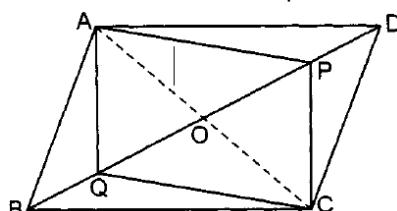
32. If the diagonals of a rhombus are 18 cm and 24 cm respectively, then its side is equal to [1]


- a) 15 cm b) 17 cm
c) 20 cm d) 16 cm

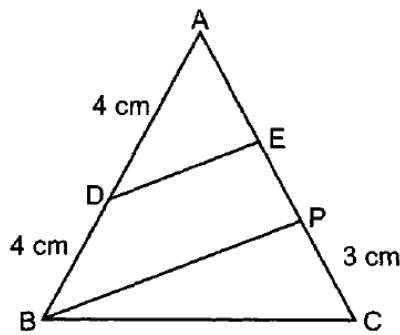
33. If APB and CQD are 2 parallel lines, then the bisectors of the angles APQ, BPQ, CQP and PQD form, square only if [1]

- a) Diagonals of ABCD are unequal b) ABCD is a parallelogram
c) Diagonals of ABCD are equal d) ABCD is a Rhombus

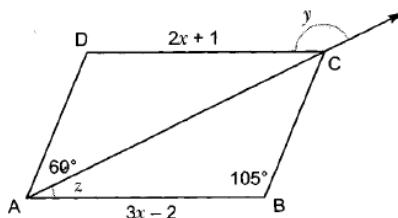
34. A diagonal of a Rectangle is inclined to one side of the rectangle at an angle of 25° . The Acute Angle between the diagonals is : [1]

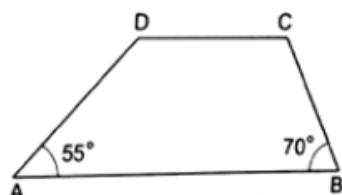

- a) 115° b) 25°

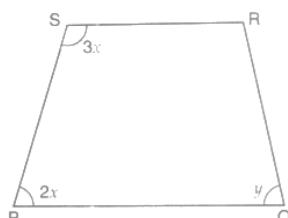
- c) 40° d) 50°
35. X, Y are the mid-points of opposite sides AB and DC of a parallelogram ABCD. AY and DX are joined intersecting at S; CX and BY are joined intersecting at R. Then SXRY is a [1]
-
- a) Square b) Rectangle
c) Parallelogram d) Rhombus
36. ABCD is a trapezium in which $AB \parallel DC$. M and N are the mid-points of AD and BC respectively. If [1]
 $AB = 12 \text{ cm}$, $MN = 14 \text{ cm}$, then $CD =$
- a) 16 cm b) 12 cm
c) 10 cm d) 14 cm
37. D and E are the mid-points of the sides AB and AC res. Of $\triangle ABC$. DE is produced to F. To prove [1]
that CF is equal and parallel to DA, we need an additional information which is:
- a) $DE = EF$ b) $\angle DAE = \angle EFC$
c) $AE = EF$ d) $\angle ADE = \angle ECF$
38. A diagonal of a rectangle is inclined to one side of the rectangle at 35° . The acute angle between [1]
the diagonals is

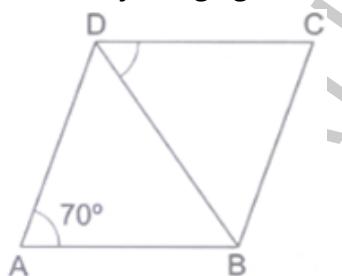

- a) 70° b) 50°
c) 55° d) 45°
39. ABCD is a Rhombus such that $\angle ACB = 40^\circ$, then $\angle ADB$ is [1]
- a) 40° b) 50°
c) 60° d) 100°
40. P is the mid-point of side BC of a parallelogram ABCD such that $\angle BAP = \angle DAP$. If $AD = 10 \text{ cm}$, [1]
then $CD =$
- a) 5 cm b) 10 cm
c) 6 cm d) 8 cm

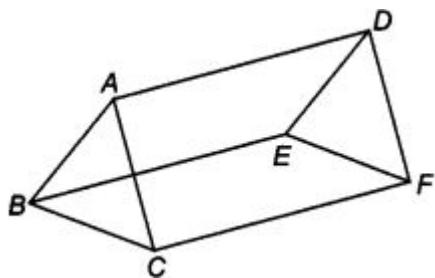
Section B


41. In Figure, ABCD is a parallelogram and P, Q are the points on the diagonal PD such that $BQ = DP$. [2]
Show what APCQ is a parallelogram.

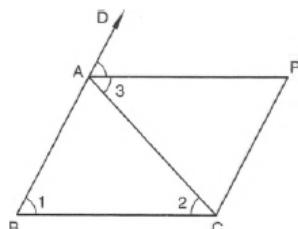

42. In the Figure, D is the mid-point of AB and $PC = \frac{1}{2} AP = 3 \text{ cm}$. If $AD = DB = 4 \text{ cm}$ and $DE \parallel BP$. Find [2]
AE.


43. In Fig., ABCD is a parallelogram. Find the value of x , y , and z . [2]


44. In the adjoining figure, ABCD is a trapezium in which $AB \parallel CD$. If $\angle A = 55^\circ$ and $\angle B = 70^\circ$ find $\angle C$ and $\angle D$ [2]


45. In Fig., PQRS is an isosceles trapezium. Find x and y . [2]

46. In the adjoining figure, ABCD is a rhombus. If $\angle A = 70^\circ$, find $\angle CDB$. [2]


47. If an angle of a parallelogram is four fifths of its adjacent angle, find the angles of the parallelogram. [2]
48. ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus. [2]
49. If the bisectors of two adjacent angles A and B of a quadrilateral ABCD intersect at a point O such that $\angle C + \angle D = k \angle AOB$, then find the value of k . [2]
50. In Fig., $AB \parallel DE$, $AB = DE$, $AC \parallel DF$ and $AC = DF$. Prove that $BC \parallel EF$ and $BC = EF$. [2]

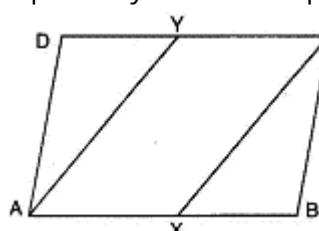
Section C

51. In the figure, ABC is an isosceles triangle in which $AB = AC$. $CP \parallel AB$ and AP is the bisector of exterior $\angle CAD$ of $\triangle ABC$. [3]

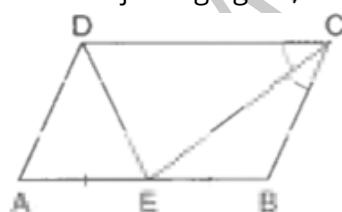
Prove that (i) $\angle PAC = \angle BCA$ and (ii) $ABCP$ is a parallelogram.

52. Prove that if each pair of opposite angles of a quadrilateral is equal, then it is a parallelogram. [3]

53. ABCD is a quadrilateral in which $AB \parallel DC$ and $AD = BC$. Prove that $\angle A = \angle B$. [3]


54. ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that [3]

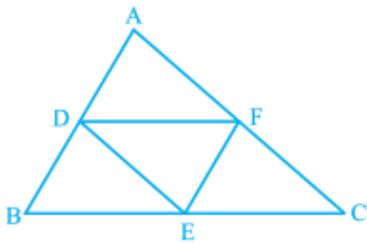
i. D is the mid-point of AC


ii. $MD \perp AC$

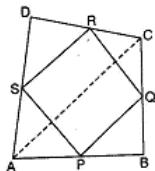
iii. $CM = MA = \frac{1}{2}AB$

55. In the given figure, ABCD is a parallelogram and X, Y are the mid-points of the sides AB and DC respectively. Show that quadrilateral AXCY is a parallelogram. [3]

56. In the adjoining figure, ABCD is a parallelogram, E is the midpoint of AB and CE bisects $\angle BCD$. [3]

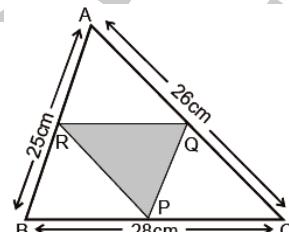

Prove that

i. $AE = AD$


ii. DE bisects $\angle ADC$ and

iii. $\angle DEC = 90^\circ$.

57. In $\triangle ABC$, D, E and F are respectively the mid-points of sides AB, BC and CA. Show that $\triangle ABC$ is divided into four congruent triangles by joining D, E and F. [3]


58. The angle between two altitudes of a parallelogram through the vertex of an obtuse angle of the parallelogram is 60° . Find the angles of the parallelogram. [3]
59. ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA. AC is a diagonal. Show that
- $SR \parallel AC$ and $SR = \frac{1}{2}AC$
 - $PQ = SR$
 - $PQRS$ is a parallelogram.

60. A diagonal of a parallelogram bisects one of its angles. Show that it is a rhombus. [3]

Section D

61. **Read the following text carefully and answer the questions that follow:** [4]
- There is a Diwali celebration in the DPS school Janakpuri New Delhi. Girls are asked to prepare Rangoli in a triangular shape. They made a rangoli in the shape of triangle ABC. Dimensions of $\triangle ABC$ are 26 cm, 28 cm, 25 cm.

- In fig R and Q are mid-points of AB and AC respectively. Find the length of RQ. (1)
- Find the length of Garland which is to be placed along the side of $\triangle QPR$. (1)
- R, P and Q are the mid-points of AB, BC, and AC respectively. Then find the relation between area of $\triangle PQR$ and area of $\triangle ABC$. (2)

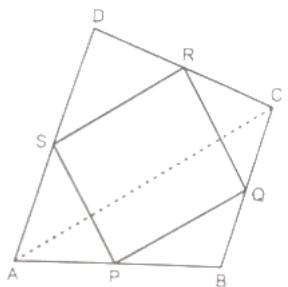
OR

R, P, Q are the mid-points of corresponding sides AB, BC, CA in $\triangle ABC$, then name the figure so obtained BPQR. (2)

62. **Read the following text carefully and answer the questions that follow:** [4]
- Harish makes a poster in the shape of a parallelogram on the topic SAVE ELECTRICITY for an

inter-school competition as shown in the follow figure.

- i. If $\angle A = (4x + 3)^\circ$ and $\angle D = (5x - 3)^\circ$, then find the measure of $\angle B$. (1)
- ii. If $\angle B = (2y)^\circ$ and $\angle D = (3y - 6)^\circ$, then find the value of y . (1)
- iii. If $\angle A = (2x - 3)^\circ$ and $\angle C = (4y + 2)^\circ$, then find how x and y relate. (2)

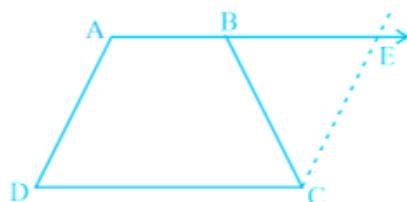

OR

If $AB = (2y - 3)$ and $CD = 5$ cm then what is the value of y ? (2)

63. **Read the following text carefully and answer the questions that follow:**

[4]

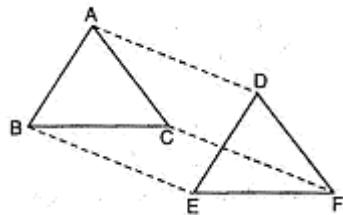
Modern curricula include several problem-solving strategies. Teachers model the process, and students work independently to copy it. Sheela Maths teacher of class 9th wants to explain the properties of parallelograms in a creative way, so she gave students colored paper in the shape of a quadrilateral and then ask the students to make a parallelogram from it by using paper folding.


- i. How can a parallelogram be formed by using paper folding? (1)
- ii. If $\angle RSP = 30^\circ$, then find $\angle RQP$. (1)
- iii. If $\angle RSP = 50^\circ$, then find $\angle SPQ$? (2)

OR

If $SP = 3$ cm, Find the RQ . (2)

Section E


64. P, Q, R and S are respectively the mid-points of sides AB, BC, CD and DA of quadrilateral ABCD in which $AC = BD$ and $AC \perp BD$. Prove that PQRS is a square [5]
65. ABCD is a trapezium in which $AB \parallel CD$ and $AD = BC$. [5]

Show that :

- i. $\angle A = \angle B$
- ii. $\angle C = \angle D$
- iii. $\triangle ABC \cong \triangle BAD$
- iv. diagonal AC = diagonal BD

66. Prove that the diagonal divides a parallelogram into two congruent triangles. [5]
67. Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square. [5]
68. ABCD is rhombus and AB is produced to E and F such that $AE = AB = BF$. Prove that ED and FC are perpendicular to each other. [5]
69. In $\triangle ABC$ and $\triangle DEF$, $AB = DE$, $AB \parallel DE$, $BC = EF$ and $BC \parallel EF$. Vertices A, B and C are joined to vertices D, E and F respectively. [5]

Show that:

- i. Quadrilateral ABED is a parallelogram
- ii. Quadrilateral BECF is a parallelogram
- iii. $AD \parallel CF$ and $AD = CF$
- iv. quadrilateral ACFD is a parallelogram
- v. $AC = DF$
- vi. $\triangle ABC \cong \triangle DEF$.

70. PQRS is a parallelogram. PX and QY are respectively, the perpendiculars from P and Q to SR and RS produced. Prove that $PX = QY$. [5]
71. Show that the quadrilateral formed by joining the mid-points of the consecutive sides of a square is also a square. [5]
72. Prove that the quadrilateral formed by the bisectors of the angles of a parallelogram is a rectangle. [5]
73. In a quadrilateral ABCD, the line segments bisecting $\angle C$ and $\angle D$ meet at E. Prove that $\angle A + \angle B = 2\angle CED$. [5]